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THE DIFFRACTION OF TWO-DIMENSIONAL SOUND PULSES
INCIDENT ON AN INFINITE UNIFORM SLIT IN A PERFECTLY
REFLECTING SCREEN

By E. N. FOX, Pu.D., Enéineering Department, University of Cambridge
(Communicated by Sir Geoffrey Taylor, F.R.S.—Received 27 August 1948)
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In a previous paper (Fox 1948), the general solutions were obtained for the diffraction problems of
a perfectly reflecting infinite strip or half-plane subjected to any incident pulse field in two dimen-
sions. A general method is now outlined by which the results of this previous paper could be used
without formal difficulty to derive solutions for any two-dimensional diffraction problem involving
strips and/or half-planes as obstacles. This method is applied to the problem of a perfectly reflecting
plane screen containing an infinite slit of uniform width subjected to any known incident pulse field.

The special case of a plane sharp-fronted pulse of constant unit pressure incident normally on
such a screen is examined numerically. The most interesting pressure phenomena to the rear of the
screen are those occurring in the direct line of the slit where the pressure front exhibits an initial
peak which becomes progressively thinner as the front travels farther to the rear. Apart from this
effect, the general process of ultimate pressure equalization through the slit appears to be of an
asymptotic character, there being no evidence that the pressure at any point to the rear ever
exceeds the incident unit pressure. The results also indicate that a region of sensibly incompressible
flow is soon developed in the neighbourhood of the slit, this region increasing in size with increasing
time. Finally, it is found that the slit behaves, to fair accuracy, as a central two-dimensional source
relatively soon after the arrival of the pressure front, for all points to the rear more distant than about
5a from the centre of the slit, where 2a is the width of the slit. This result and the preceding incom-
pressible flow phenomenon enable approximate solutions to be obtained for particular use at later
times when the calculation of the exact solution involving separate diffraction waves becomes
unmanageable.

/ |\
A B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Vol. 242. A. 839. (Price 7s. 6d.) I [Published 25 May 1949

The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to [P

Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. IINORY
WWWw.jstor.org

e



http://rsta.royalsocietypublishing.org/

PHILOSOPHICAL
TRANSACTIONS

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

L

_\r
NI
olm
~ =
oY)
o)
=w

y

SOCIETY

OF

OF

Downloaded from rsta.royalsocietypublishing.org

2 E. N. FOX ON THE

1. INTRODUCTION

In a previous paper (Fox 1948) the author has given the solution for an infinite perfectly
reflecting strip subjected to any two-dimensional field of sound pulses. For brevity, this
previous paper will be referred to as paper I, and its equations will be quoted with a prefix
I to distinguish them from the equations of the present paper.

The related two-dimensional problem involving an infinite uniform slit in a perfectly
reflecting screen will be considered in the present paper with particular reference to the
case of a plane pulse of H(¢) shape arriving at normal incidence. \ |

Both the slit and the strip are special cases of a plane screen with apertures for which it
was shown in paper I that the complete pressure field can be explicitly obtained if either
(a) the pressure gradient through the apertures or (5) the pressure on the back of the screen
can be obtained. These latter can in fact be derived for the slit by following the same method
as in paper I, namely, the derivation of an integral equation which, when transformed by
the Laplace transformation, can be solved by using the basic relation I (52) to give a final
series solution corresponding to successive diffraction waves. Nothing essentially new in the
mathematics arises, however, in such further application of the integral equation method,
and it has been thought more instructive to use an alternative approach of a more physical
character in the present paper. This physical approach uses the final results of paper I and
serves in particular to illustrate how more complicated problems involving strips as obstacles
could theoretically be tackled. We start therefore by considering the general basis of such
a method and then proceed to the specific problem of the slit.

2. GENERAL METHOD OF SOLUTION

In paper I, the incident field of pressure on an obstacle such as a screen was defined simply
as the pressure in the absence of the obstacle. This definition will now be generalized for
several obstacles so that scattered waves from one obstacle can be treated as part of the
incident field on a second obstacle.

<% O

'Y |

FIicUreE 1.

Consider the general case of pulses originating from any combination of sources 4, B, C, .
in three dimensions and impinging on any arbitrary arrangement of obstacles Sy, S, ..., S,
as illustrated in two dimensions by figure 1.

In the absence of all obstacles let the total pressure at any point (#,y,z) due to all the
sources be p,(t, x,y, z) which will be termed the external pulse field. Let the corresponding
pressure at (,y, z) with all obstacles present be (¢, 1,7, ).
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DIFFRACTION OF TWO-DIMENSIONAL SOUND PULSES 3

Now apply Kirchhoff’s solution of the wave equation (Jeans 1925, p. 522) to the medium
bounded externally by a sphere of large radius R and internally by the surfaces $,,.S,, ..., S,
and small spheres of radius ¢ round the sources 4, B, C, .... By taking R large enough we can
enclose all sources and all obstacles and, moreover, we can ensure that for any finite time ¢
the large sphere gives zero contribution to Kirchhoff’s solution. Similarly, by letting ¢— 0,
the total contribution of the small spheres round the sources will be simply the pressure in
the absence of the obstacles, namely, p,(¢, %,9, z). '

Kirchhoff’s solution can therefore be written in the form

10rd d 10
peny2) =pbnna—3 3 (25 %l (l)12 t_mdsq, o
where the integrals are taken over the surfaces of the different obstacles, ¢ is the velocity
of sound, 7 is the distance from (,y, z) to any point on the surface S of outward normal n
into the medium, and the integrand is to be evaluated at time t—r/c
The effective incident field p,,,(¢, x,y, z) for any one of the obstacles S,, will now be defined
by the equation

P =ttt =g [t () 300 45w @)
in which the surface integral is taken over S, only.

Comparing (1) and (2) we see that p,, includes all contributions to the pressure p except
the term in the Kirchhoff solution arising from S, itself. As thus defined, the effective
incident, field differs for each of the obstacles; but this is not unreasonable on the physical
basis that each external pulse produces scattered waves when it strikes any obstacle, and
these scattered waves are then in turn incident, in general, on the other obstacles.

When there is only one obstacle §,, the effective incident field g, = p,, the pressure in
the absence of the obstacle, and the present definition is then equivalent to the definition
of incident field given in paper I.

If desired, any group of obstacles Sy, ..., S; can be treated as a single obstacle by defining
their incident field as the contribution in equation (1) of p,(¢, %, y, z) and the integrals over
the remaining obstacles S}, ,, ..., ;. In this way a regular grating, for example, can be
considered as a single obstacle, and if no other obstacles are present the effective incident
field is simply the external pulse field p;; alternatively, each strip can be treated as a separate
obstacle subjected to an effective incident field which includes scattered waves from the
other strips. _

Returning to the general problem, the scattered field p,, originating from the surface S,

is defined by | ) Lordp 1 o
bults%:4,2) = ff[ rdn 0t p(?n( ) By (3)

r an t—r/c

and equation (3) may then be written

p = pim +pm’ (4)
where from (1) and (3) Pim = p,-—l—mi: b+ i 1 by ' (5)
g= g=m+
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4 E. N. FOX ON THE

Equation (4) gives £ different ways of subdividing the total field, and a problem involving
k obstacles can correspondingly be considered as £ separate problems each involving one
obstacle only.

For perfectly reflecting surfaces (?p/an = 0, and if the problem for each obstacle can
separately be solved to give the pressure on the obstacle in terms of the effective incident
field p,,, a series of £ simultaneous equations would be obtained relating the pressure
distributions on each obstacle and the external incident field ;.

Provided all obstacles are a finite distance apart there is then no formal dlfﬁculty, as
illustrated later for the slit problem, in solving these equations in successive stages corre-
sponding to the finite intervals of time involved in the successive interaction of the scattered
fields. In particular, as concluded in paper I, the solution for the strip problem implies no
formal difficulties in solving any arbitrary arrangement of separate strips subjected to
two-dimensional pulses; the labour of numerical evaluation would, however, undoubtedly
be prohibitive in all but relatively simple cases.

Consider now, as in paper I, the case where the obstacle S,, is a perfectly reflecting plane
screen with apertures. The surface integral in (2) and (3) is then taken over bot4 sides of the
screen excluding the apertures; this is in contrast to the corresponding discussion of paper I
where Kirchhoff’s solution was applied to the rear only of the screen including the apertures.

For complete reflexion dp/dn = 0 and equation (3) becomes ‘

1drdp 0 (1
tuttre.2) =g [ Gamar 2] 45 (6)
Taking the plane of the screen as x = 0, we obtain similarly for the image point ( —x,y, z)
Lar'op 4 (1 ,
bt =54, 2 4ﬂff[cr on ot ‘ban( ):I,T,'/CdSm‘ ‘ (7)

But, as in equation I(6), the distances 7, ' of the points (x,y,2), (—%,y,z) from any
element dS,, on either face of the screen are related by

' ar' _ or ) . .
| r=n 5T T | (8)
Hence from (6), (7) and (8) we have
Dt x,y, z) = —p,(t, —x,9,2). o (9)

Thus the scattered field due to any plane reflecting obstacle gives equal and opposite
pressure contributions at image points. For the special case of a point (0, 7, z) in an aperture

of the screen
ar

5 =0

for every element dS,,; hence from (6)
| pm(t) 0,7, Z) =0 o : (10)

for any point in an aperture. This corresponds to equation (9) with continuity of pressure
., across the aperture. A similar result does not, of course, hold for a point on the reflecting
surface of the screen since r— 0 for elements surrounding the point, and it is necessary to
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DIFFRACTION OF TWO-DIMENSIONAL SOUND PULSES 5

consider the limiting case when ¢— 0 of pressure at a point distant ¢ from the screen. If
this limiting process is applied to either (6) or (7), representing points on either side, the
result is simply equation (9) with x = 0. For such points the pressure will in general be
different on the two faces of the screen.

If we now apply equation (4) to image points in turn and add the resulting equations, in
view of (9), we obtain

bt %,Y,2) +p(E —%,Y,2) = pin(t, %Y, 2) + Pim(t, — %, 9, 2). (11)
Similarly, from (4) and (10), we obtain

p=bm | (12)

for any point (0,y,z) in an aperture. As thus-deduced, it may be noted that (12) does not
depend on assuming continuity of the pressures p and p,,, across the aperture which does
not necessarily hold when a further obstacle occupies part of the aperture; this point is
illustrated in the solution given later for the slit problem regarded as two separate half-
planes, each of which then occupies part of the aperture relevant to the other.

At a point on the reflecting part of the screen, provided no other obstacle is in contact
with it, the effective incident pressure p,,, will in general be continuous and equation (11)

leads to brt106 = 2p;, (13)

where the suffixes fand 4 refer to the front and back of the screen.

Equations (11), (12) and (13) differ only from the basic equations I (1), I (2) and I (3)
of the previous paper, in that p,, replaces p;. This indicates, as we should expect physically,
that the results of paper I can be used not only for pulses arriving from external sources
but also for the scattered fields from other obstacles arriving at a strip or half-plane.

From the physical standpoint it is convenient to think of the scattered field originating
from any strip or half-plane as being composed of constituent waves. Consider, for example,
the simple case of paper I in which a strip is subjected to a plane pulse arriving at normal
incidence. In this case, the total pressure field at any point consists in effect of contributions
from (a) the diffraction waves sent out from either edge into all regions, (4) the incident
plane pulse in all regions except the shadow and (¢) a reflected pulse existing only in the
region directly in front of the strip. To obtain the scattered field as previously defined we
must subtract the incident pulse in a// regions to leave (a) the diffraction waves from the
two edges contributing in all regions, () the reflected pulse in the region immediately in
front of the strip and (¢) a ‘cut-off” wave propagated to the rear in the shadow and exactly
cancelling the incident pulse in this region. It is easy to overlook this third constituent,
since it only manifests itself indirectly as the absence of the incident pulse. Strictly, all these
constituent waves form a single entity corresponding to the total disturbance produced by
the strip. In particular, at the boundaries of either the shadow or the reflexion region the
cut-off or reflected wave respectively ceases to exist, and the resulting discontinuities are
balanced by corresponding discontinuities in the relevant diffraction waves. As illustrated
later in the solution for the slit problem it is essential to bear in mind this point that a
diffraction wave is not in general a separate entity but only exists in conjunction with
reflected and ‘cut-off” waves.
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6 E. N. FOX ON THE

A similar physical interpretation can be made in the geﬁeral case of a plane screen with
apertures. Thus, for any incident field p,,, arriving from sources or obstacles on one side
of the screen, the scattered field p,, can be regarded as consisting of (i) reflected waves in
partial regions to the front, (ii) cut-off waves in the image shadow regions to the rear, and
(iii) diffraction waves from the edges of the apertures sent out into all regions. For perfect
reflexion, the reflected and ‘cut-off” waves will give equal and opposite contributions at
any point and its image point respectively, and, since the total scattered field is also equal
and opposite at such points by (9), it follows that the pressure in diffraction waves will
likewise be of equal magnitude but opposite sign at image points in the screen.

3. SuIT IN PERFECTLY REFLECTING SCREEN SUBJECTED TO ANY
TWO-DIMENSIONAL PULSE FIELD

Consider the problem of figure 2 in which a slit BC of uniform width 2a formed by two
coplanar perfectly reflecting half-planes 4B and CD is subjected to an external two-dimen-
sional pulse field p,(z, %,9).

A

¥

Ficure 2

Without loss of generality we can assume the external pulses to be arriving from the right
x>0, since the problem for pulses arriving from the left is essentially the same, and we can
superpose to obtain the solution for pulses coming from both directions. Since the two half-
planes in combination can be considered as a single obstacle of the form of a plane screen
with one aperture, we can use equations I (1) and I (7) or I (9) to give the complete solution,
provided we can obtain either (a) the distribution of the pressure gradient

=L v =0, (14

over the slit or () the distribution of the pressure p, on the back of the half-planes which we
shall denote by

p,=F(Y,t) onrearof CD (figure 2),} (15)

pp=F(Y',t) onrear of AB (figure 2).

These basic solutioﬁs we shall derive by considering each half-plane as a separate obstacle
and using the general solution for a half-plane given in appendix B of paper I.


http://rsta.royalsocietypublishing.org/

L

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

DIFFRACTION OF TWO-DIMENSIONAL SOUND PULSES 7

We make the problem non-dimensional by taking the width 2a of the slit as our unit of
length and the time 2a/c for a sound wave to travel this width as our unit of time; in these
units the wave velocity is unity. The plane ABCD is taken as ¥ = 0, and it is convenient to
introduce the four symbols y, Y, y’, ¥’ to denote positive distances measured from either
edge of the slit as shown in figure 2; these distances are then connected by the relations

y=—Y =147 =1—y. - (16)
It is further convenient, in order to use the inherent symmetry of the slit, to use the dual

notation 2O =1 ) | (17)

to denote values of the external incident pressure when x = 0, regarded as functions of
¢ and y or y' respectively.

Regarding each half-plane as a separate obstacle we can write the general equation (1)
in the form

p(t: x)y) =P,'(t, x)y) +pl(t: X, y)"+p2(t’ x’y)’ (18)

where p, and p, refer to the scattered fields from the lower and upper half-plane respectively.
The effective incident field for the lower half-plane is then

Da(t, %,9) = p,(t %, y) +p2(t, %, 9), : (19)
whilst that for the upper half-plane is |
Pt %) = pi(t %, 9) +1(4 %, 9)- (20)

3-1. Solution for pressure on the back of the screen

Consider first the problem of the lower half-plane CD subjected to an incident field p,,
defined by (19). The relevant solution is equation I (161) of paper I, which gives the pressure
on the rear of the half-plane in terms of the incident pressure at points above it in the same
plane. In the present problem the term p, in the effective incident field p, has different
values on opposite sides of the upper half-plane, and there is an apparent ambiguity. This
is most easily resolved by considering the actual problem as the limiting case of one in which
the upper half-plane is displaced a small distance ¢—0 to the right of the plane x = 0 of
the lower half-plane. The value of p, to be used in the solution is then clearly the value on
the rear of the upper half-plane. Consideration of the other limiting process in which the
upper plane is displaced to the left would, of course, lead ultimately to the same solution
but is more complicated, since the scattered field p, would then arrive from the left whereas
p; arrives from the right.

The relevant values of p,;, to be inserted in equation I (161) in place of g, are thus the
values in the aperture BC and on the rear of AB (figure 2). But by (10) we have p; = p, = 0

on BC, whence
ba :ﬁi(y’ t) (x =0, O<y<l), (21)

whilst on the rear of 4B we have p; = 0 and from (18), (19) and (15)

P,I—F(Y’ 0 = () HEX, )~ 0} (=0, 1<y =1+, (22)
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8 E. N. FOX ON THE

Hence, applying I(161), with p; for p, to the problem for the lower half-plane, the
solution for the pressure on the back can be written in the form

Ay = L[ A (1),

LB (V= 1= Y = F)—p(V L, e— 1=V =T)} /[ ¥\
+7Tfo | 1+ Y+Y A/(1+Y')dy (¥>0).
(23)

In this form, the first term represents the direct effect of the external incident field, and
the second term gives the effect of the scattered field from the upper half-plane.

Similarly, we may consider the separate problem of the upper half-plane subjected to
an effective incident field p;,, and a second equation will be obtained which, by virtue of
the notation we have chosen, is given simply by changing accented to unaccented symbols
and conversely, in equation (23). Thus we have also

iy = L[ ety ) (Y) :
) = [P () d

1 (>{F(Y,t—1-Y —Y)—p(Y+1,t—1—-Y'—Y)} ,
+3’1f0 1+Y+Y A/(1+Y) (¥7>0).
(24)

It will be noted in the two equations (23) and (24) that the function F or /' on the left-
hand side at time ¢ depends only on values of the other function F’ or F for times ¢—1 or
earlier. It is thus easy to obtain a solution in the form of successive diffraction waves by
assuming series of the type

F(Y,t) = Fy(Y, )+ F(Y,8) + ...+ F,(Y,8) +... (25)
F(Y',8) = F)(Y', ) +F}(Y', ) +...+ F.(Y, t)+.... (26)
Equation (23) will then be satisfied if
by, t—y— Y)J(Z)
S e N L (2)
1(oFy(Y,t—1=Y'=Y)—p(Y'4+1,t—1-Y' —7) Y\ o
Fy(Y,1) = f 117+ Y «/(H—Y’)dY’ (28)
F(Y,t—1—-Y —Y) Y , |
Pyt = [ 2= () v =), (29)

whilst to satisfy equation (24) we have an exactly similar set of equations with accented
changed to unaccented symbols and conversely. The complete six equations thus enable
the terms in the series (25) and (26) to be successively determined, and a formal explicit
solution for the pressure on the rear of the half-planes is then given by (15), (25) and (26).
If the external incident field is symmetrical about the slit the functions " and F” are the
same, and we can drop the accents to F; and F; (but not to Y’) in equations (28) and (29).
In this case, if the external field p, first arrives at the edges of the slit at time ¢ = 0, then

~ physically we must have ‘
p(y,8) =0 (t+y<0), (30)
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DIFFRACTION OF TWO-DIMENSIONAL SOUND PULSES 9

and it follows from equation (27) that
Fy(Y,t) =0 (t<7Y). (81)
Hence by induction it is easy to show from (28) and (29) that, as in the corresponding
strip problem of paper I, F(Y,0) =0 (t<r+7). ; (32)

Conversely, as in paper I for the strip problem, it is easy to show that the solution is the
unique solution satisfying the necessary physical condition

F(Y,)=0 (t<7Y), (33)

corresponding to no effect being propagated down the rear of a half-plane faster than the
unit velocity of sound. } ,

For an unsymmetrical incident field similar relations to (31) and (32) can be obtained,
the main feature being that the r-even F, and r-odd F) functions form one set propagated
at successive unit intervals of time after the arrival of p, at the lower edge, whilst the r-even
F] and r-odd F, functions form a similar set with time measured from the arrival of p; at
the upper edge. Having obtained the solution for p,, equations I (9) and I (1) then give
the formal explicit solution for the pressure everywhere.

The solution for p, corresponds to the physical process of the external incident field
producing diffraction waves F,, Fy at the two edges which are then each incident on the
further edge to produce F|, F, respectively and so on. An alternative method of solution
could be based on this process, ab initio, by assuming the forms (25) and (26), where F,,
F are the solutions for each half-plane in the absence of the other and any subsequent 7,
or F, , is the half-plane solution due to the effective incident field of the preceding diffraction
wave from the other edge. When using this direct physical procedure, it is essential to use
the fact pointed out earlier (§2) that a diffraction wave from an edge is not in general a
separate physical entity but has a ‘cut-off” and reflected wave associated with it. Thus
the solution I (161) applied to the lower half-plane involves the pressures in the incident
field for all y>0, x = 0, and when considering F,(Y,¢) as being produced by the incident
field of the first diffraction wave from the upper edge we must include the associated cut-off
wave as part of this field; this wave leads to the negative p; term in equation (28). Since
F,, F; and all subsequent waves are produced by incident fields arriving from directly
above or below the relevant edge, they have zero associated cut-off and reflected waves and
can be considered each as a separate incident field as indicated by the form of equation (29).

Provided the possible effect of associated cut-off waves is borne in mind, this separate
consideration of the constituent waves of the effective incident field is possibly simpler in
use, since it is easier to think of these waves being separately incident on the second half-
plane than to think of the whole scattered field from one half-plane as forming a single
incident field. This alternative method will accordingly be used to obtain the solution for
the pressure flux ¢ through the slit. ‘

3-2. Solution for ¥ (y,t)

We shall limit consideration to the case of a symmetrical incident field, since the extension
to the more general case of an unsymmetrical field involves essentially only a duplication
of formulae and symbols; this can easily be made for any particular problem.

Vol. 242. A. 2
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10 E. N. FOX ON THE

In the light of the previous discussion of the physical nature of the problem we assume
ab initio a solution for ¥ of the form

U, 8) = ¥i(y, ) + [0, ) + &1 (1, D + ...+ b, (1, +...]
‘ Hboy, )+ )+ (Y, 0+ ], (34)

in which ¥, is the pressure gradient in the external incident field p;, and the bracketed sets
of terms give successive diffraction wave contributions from the lower and upper edges.

Thus ,(y,t) is the pressure gradient in the first diffraction wave due to the external
field alone incident on the lower half-plane, and when this ¢, wave reaches the upper edge it
produces a diffraction wave contributing an additional ¢, (y’, ¢) ; this $; wave then produces
Y,(y,t) on reaching the lower edge and so on. Similarly, $(y’,¢) is produced by the
external field incident on the upper half-plane, and this ¢, wave then produces in turn
Y, (y, ) at the lower edge and so on. Generally, therefore, the contribution ¢, ,, from any
edge is produced by an effective incident field of the ¢, wave from the other edge.

The relevant solution of paper I for a single half-plane is equation I (165), in which the
additional pressure gradient contributed by the diffraction wave is given by an integral
involving values of the incident gradient cancelled by the half-plane. We must here note
that in paper I, the symbol ¢, was used to denote the total pressure gradient in the half-
plane problem, since it was this quantity which determined the further diffraction waves
in the strip problem. In the present problem of the slit it has been found desirable to use ¢,
to denote the pressure gradient in the half-plane problem due to the diffraction wave only,
and this will be given by the integral term in I (165). Hence for ¢, we have

by, = 3 Eleld=10) [() iy, (35)

where W,(Y, ) denotes the pressure gradient in the symmetrical external incident field on
the lower half-plane.

For the production of ¢, (y,¢) regarded as the diffraction wave produced at the lower
edge by an incident ,(y’, ¢) wave, we note that the relevant values of the incident gradient
lie wholly on the lower half-plane which is outside the regions of cut-off and reflected waves
associated with (¢, £). Unlike the previous solution for pressure there is thus no need to
obtain a special formula for ¢, in terms of ¢, and we proceed direct to the general case of
the production of ¢, ,(y, t) from the lower edge by the ¢, (y',#) wave from the upper edge.
Since y’ = 147, the relevant incident gradient which is cancelled by the lower plane is
¢,(1+7,4), whence equation I (165) gives immediately

bt =PI By,

Equations (34), (35) and (36) give a complete solution for the pressure gradient through
the slit when subjected to a symmetrical incident field. From equations (35) and (36) it is
easy to obtain relations analogous to (31) and (32) and to show that the solution is unique,
subject to the finite velocity of propagation of diffraction effects from the edges. Using this
solution for ¥, equations I(7) and I(1) give the formal solution for the pressure ficld
everywhere.
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DIFFRACTION OF TWO-DIMENSIONAL SOUND PULSES 11

4. PLANE H({) PULSE INCIDENT NORMALLY ON A PERFECTLY REFLECTING
SCREEN WITH A UNIFORM SLIT

4-1. Solutions for p, and ¥

We consider now the special case of a plane pulse arriving from the right x>0 at normal
incidence, and we take the time variation in the pulse to be given by Heaviside’s unit
function H(#) (figure 3). The solution for any other time variation can then be immediately
obtained by superposition as in the strip problem of paper I.

A A

SOCIETY

OF

A A

SOCIETY

OF

!
o
3
g
8
0 time —
Ficure 3. H(t) pulse.
We measure time from the instant at which the pulse arrives at the slit, and the external
incident field is thus given by -
b= H(t+x). (37)
Wenote thatthis field is symmetrical with respect to the slitwhence the pressure distribution
on the back of the screen will be the same for either half-plane. For the lower half-plane
we can then write ' ‘
ﬁb:F(Yat):FO(Yat)+F1(Y:t)+---> (38)
where F; corresponds to the single half-plane problem and is given by (27) and (37), whilst
the subsequent terms are then given by equations (28) and (29) with F/=F, because of
symmetry.
In view of the relation (32) it is convenient as in paper I to use a different origin of time
for each wave by writing
T=t—r-Y, (39)
so that any term in (38) is zero when its relevant 7 is negative.
The first term in (38) can then be written in exactly the same form as for the strip problem,
since it is simply the single half-plane solution, namely,
, 2. _ 7
Fy(Y,8)=Gy(¥,7) = Ztan-1 J (7) H(r). (40)
Since the remaining terms 7, F,, ... are all negative we write
F(Y,0=—f(Y,) (r=1), (41)
whence equations (28) and (29) with F/=F, give results for 7>>0 which can be expressed as
NS B LGy (Y 1—2Y,) (¥
[T 1) = Gy(Y,74+1) — Gy (Y, 1) ﬂfo i A/(l +Yo) dy,, (42)
_ L (X, T—2Y) Y
oty = [P [y ) av =), (43)

2-2
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The final solution for the pressure on the rear of either half-plane at distance Y from
an edge is then

by = FY, 1) = Go(Y, t—Y) —f{( ¥, t—Y—1) — ...~ f (Y, t— T —1) — .., (44)

where for any finite time {<<Y +n--1, all terms 7>n are zero and the solution involves only
-a finite number of terms. _
As a special limiting case we may here note that for a point on the rear of either half-plane
at a large distance from the slit, the pressure in the initial stages when (¢—7Y)/Y is small is
given from (40) to (44), with Y —co and ¢— Y finite, by

ﬁb—>717 %J(t_Y)—-Al(tMY—‘l)—Az“(t—- Y_z)—...} (Y—>o0), (45)
A =2y 11— [T SUet=R gy, (46)

The solution for the pressure gradient (y, £) in the slit can similarly be obtained by using
the form (87) for the external incident field in the general solution for any field given by (34),
(35) and (36). For this second form of solution of the problem we can use a different origin
of time for each diffraction wave by writing

T =t—y-—r, q’r(ys t) Egr(ya TI)' (48)

| The solution for the gradient ¥ can then be expressed in the form

U(y,t) = 0(t) +[go(y, t—y) + &y, t—y—1) +...]

+le@t—1—y)+amt—1-1=y)+...1,  (49)
where the Dirac function 4(¢) is the gradient in the external H(#) pulse, whilst the g, functions
are given by : '
)=z ()
, 7)) =—— [|=)H(T), 50
&:7) = gy | () HE (50)
N 1 g (14Y,7—2Y) (_IQ,) V
(1) = 7y 7+, J v dY,. (51)

_ Any g, function is zero for 7 <0, so that the solution (49) consists only of a finite number
of terms for any finite time . ,

The preceding solutions for p, and ¥ are each separately sufficient to give the complete
pressure field in conjunction with equation I (1) and either equation I (9) or I (7).

4-2. Pressure fluxunit length through slit and total force[unit length on back of screen
If we consider unit length in the z direction, a quantity Q(¢) can be defined by

o) =[ () _ar-[vwoa, (52)
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DIFFRACTION OF TWO-DIMENSIONAL SOUND PULSES 13

If we replaced p in this equation by velocity potential the corresponding quantity would
be the flux/unit length as usually defined. By analogy, Q(¢) will be referred to as the ‘ pressure
flux’ through the slit. ‘

The corresponding total force/unit length P, on the back of the screen, i.e. on both half-
planes together, is given by

P,—2 f “F(Y, 9 dY. (53)

Now, by an argument exactly similar to that in § 3-6 of paper I, we can show that the
integrated pressure over any plane ¥ = — X < 0is propagated to the rear as a plane wave, and
in particular we can then obtain an equation similar to I (102) but with interchanged ranges

of integration, namely, ,
B ) 1 8[2,, 13dp,
fc;ﬂ (b—1:) dy *‘f dy+ f ¢ 0t %, (54)

where the points 4 and D_(figure 2) lie beyond the pressure front of the diffraction regions
at any time. : '
Physically therefore we have a result, similar to that of paper I, that the excess
flux through the slit is proportional to the total force on the back of the screen. In the
present non-dimensional units with H(¢) shape of pulse we can write equation (54), by use

of (52) and (53), in the form
Q)0 = 2%, (55)

which is analogous to equation I (105) of the strip problem.

Similarly, in the first two intervals of time up to ¢ = 2 we can obtain explicit formulae for
P, and @ analogous to results obtained in § 3-6 of paper I for the strip problem. It may here
benoted that the formulae derived in paper I for the average pressure on the back of the strip
apply equally to the total force/unit length on the back of the strip since the width of the
strip was taken as unity.

We now consider separately the first two unit intervals of time.

i) o<it<1
For this first interval, P, is exactly equal to the corresponding total force/unit length on
the back in the strip problem, since in both problems this total force is simply twice the force
on a single half-plane subjected to the H(f) pulse. Corresponding to equation I (109), we
obtain in the slit problem ,
f P,=1t (0<i<l1), (56)
and then from (55) we have
: Q) =46t)+1 (0<it<]l). (57)
(i) 1<t<2
For this interval, P, involves values of F, and F}, the contribution from the former being
given by (56) as in the first interval. The contribution of F) is S most easily obtained by using
the Laplace transformatlon Thus, if we write

AT, 2) = fo eME (Y, ) dt, ®,(Y,A) = f:e*“Fl(Y, 1) dt, (58)
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14 E. N. FOX ON THE

then A, is given by equation I (76) which can be written by use of I (51) and change of

integration variable in the form

Y
AT ) = 2 f ey, (59)

.

We now apply the Laplace transformation to equation (28), after putting F'=F by virtue
of symmetry, and we obtain

®,(Y,1) f %;?[Aﬂm—ﬂ A/(ﬂ%) NG (60)

Hence, if we integrate with respect to ¥ from 0 to o, interchange orders of integration
and then change from Y to ¢ as integration variable by the substltutlon Y= (Y "+1) tan? ¢,
we find

f (Y, ) d f [A (Y, 1 _I:lf ”C_’\(Y'“)secz‘ﬁtan2¢d¢a’Y'. (61)
0 .
From equation (59), we can now write
AO ,{f —AY’sec20 __ ) 1) df

in equation (61) and interchange orders of integration to perform the ¥’ integration with

the result
® 4 [imrimemAsectdgingsec? ()
fo (Y, 1) dh = — JO jo o ety W08, (62)

‘The 6 integration can now be performed, and then making a final substitution
sec?¢ = secy we find

2“0, (F, 0 d¥ = = 2, [Terreer (1—cos1) d. (63)
0 .

This is the same as the second term in equation I (113) save for one difference in sign,
and the interpretation of (63) is therefore the same as the bracketed terms in I (114) apart
from relevant changes of sign. Thus allowing for the contribution of the F term as given by
(56) we obtain finally

P, = t—%[gsecé’~tan {+{—log (sec{+tanl)] (1<t<2), (64)
where sec{ =1 (65)

It will be noted that this expression differs only in the signs of the second and third terms
from the corresponding equation I (114) of the strip problem. Similarly, equations I (117)
and I (118) will give the total impulse/unit length in the slit problem if we replace 3, by P,
and change the signs of the second and fourth bracketed terms in I (118).

The formula for Q(¢) in this second interval can be obtained from (64) by using (55),
with 8(¢) neglected since it is zero for >0. We then find

Q) =1-2((sinl) (1=i<2), (66)
with { defined by (65). ‘
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DIFFRACTION OF TWO-DIMENSIONAL SOUND PULSES 15

4-3.  Asymptotic solution and approximate formulae

Since the preceding solutions in the form of diffraction waves are not convenient when
many waves are involved, it is desirable to obtain an alternative form for large values of ¢.
Such an asymptotic form of solution can be derived as in paper I by considering the problem
when transformed by the Laplace transformation and making analogous assumptions to
those used in Rayleigh’s approximate method for a sinusoidal wave train of long wave-
length (Lamb 1932, p. 532). Alternatively, equivalent direct assumptions can be made in
the actual problem which lead to the same final solution. We shall follow this alternative
direct method since it is perhaps physically more instructive.

First, forany point (— X, y, 0) to therear of the slit at a large distance R from the centre-line
of the slit, we should expect the slit to behave as a two-dimensional source when {—R is
large, i.e. after the initial effects of the sharp front in the external incident pulse have been
evened out.

For such a point, the exact equation I(7) with the surface integral taken over the slit,
can be written in view of (14) as

pl6=X,0) =1 [ [ ot =) diodz, (67)

where 1?2 = X2+4 (y—y,)?+2¢. (68)

The assumption of a two-dimensional source then corresponds to neglecting in (67) the
variation of 7 with y, when both 7 and ¢—r are large. Hence, writing

RE= X4 (y—1)2 r2=RPiz,  (69)

and replacing r in (67) by its value 7, on the centre-line of the slit, we can perform the y,
integration in terms of the pressure flux Q(¢) to obtain

p(t, —X,y) ~ f Q(t rO)d (t—R large, R large). (70)

If we now change the integration Varlable by writing
= Rsinhu, r,= Rcoshu, (71)

equation (70) takes the more usual form for a wave from a two-dimensional source, namely,
i —X,y) ~ J‘ Q(¢t—Rcoshu)du (t—R large, R large). (72)

As a second assumption, when ¢ is large it seems reasonable to expect that the flow near
the slit will become approximately incompressible throughout a region round the slit, and
that this region will increase in size with increasing time. In particular, when ¢is large enough
this region of sensibly incompressible flow will include points at large distance R from the
centre-line of the slit.

The relevant pressure flux is @ (#), and the pressure in the slit is unity by virtue of equation
I(2) and (37); hence, the known solution (Lamb 1932, p. 73) for incompressible flow
through a slit gives on this second assumption:

pt—%,9) ~1-Wiogar (4R large, R large). (73)
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16 E. N. FOX ON THE

But when R and ¢/R are both large, equations (72) and -(7 3) can apply simultaneously,
whence we obtain

= f " Q(t— R cosh u) du +9% log4R~1 (f/R large, R large). (74)
0 v ,

This gives an integral equation to determine the asymptotic form of @Q(#). It can be
solved by writing

AW = [T, (75)
and applying the Laplace transformation to obtain
¢ {KO(/IR) +log 4R} ~1 (AR small, R large), ‘ , (76)

in which it may be noted that the condition AR small follows from the condition t/R large.
But for AR small we can write (Whittaker & Watson 192%, p. 374)-
Ky(AR) ~—log (JAR) —7, -

and on substitution in (76) we obtain

= —
Q) ~ Mlog 1=Iog 857) (A small). (78)
This equation is the analogue of the corresponding result (Lamb 1932, p. 532, equation
(20)) for the sinusoidal wave train of long wave-length. ‘
The interpretation of (78) by the Bromwich integral is straightforward, employing the
usual contour (Carslaw & Jaeger 1941, figure 11) for a function with a branch point at the
origin in the complex A plane; we find

e~ P
0~ |, g g3 %
where f=8e77 = 4492, (80)

(t large), (79)

For numerical evaluation of this asymptotic form for @ it was found convenient to write
it in the form :

Q) ~ f"e—ﬂtéda, £ et (f large). (81)
0 : .

The assumptions made in the derivation of the preceding asymptotic solution for Q(¢)
can also be applied separately to obtain approximate forms for the pressure at points to
the rear. We can summarize these approximations for large time by considering different
regions to the rear proceeding outwards from the slit.

(a) tlarge, YR large
In this region the flow is sensibly incompressible, and from the known solution for such
flow (Lamb 1932, p. 73) we can write

where X = Lsinhfsing, y=1+%Lcoshf cosy. (83)
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DIFFRACTION OF TWO-DIMENSIONAL SOUND PULSES 17

In particular, for a point on the rear of a half-plane at distance Y from the edge we have
pp~1 —%t)cosh"l (1 +2Y) (¢ large, t/(Y 4%) large). (84)

Similarly, for a point to the rear in the plane of symmetry, y = 4, the solution (82) simplifies

© Q)
Pt —X, %) ~1————7;—sinh"‘2X (¢ large, ¢/X large). (85)

In these equations (82), (84) and (85) we can use values for @ (¢) given by the asymptotic
solution (81).

When ¢is large enough, this innermost region contains points for which R is large compared
with the unit width of the slit. For such points we can approximate further in (82) to obtain
the form (73) already used in the derivation of the asymptotic form for @(¢), namely,

pt, — X, fvl—%lo 4R, (/R large, R large). 73 bis
Yy o o8 g

(b) R large, t—R large

These conditions are those necessary for the slit to behave effectively as a simple two-
dimensional source, and the pressure is therefore given by equation (70) or its equivalent
equation (72).

If we use Q(¢) = 0 for £ <0 and change the integration variable in (70) to 7,, we can write
the approximation in the third form

p(t, —X,y) ~ lf;j%(t )) dr, (R large, t—R large). (86)

When R is very large so that {— R can be large but (¢—R)/R small, we can approx1mate
further to equation (86) and write

Pt —X,9) ~ 4 (f/;‘;R) ;
_ (t—R large, (¢—R)/R small). (87)
_1rQ@—p ' «

)=,

For a point of very large R the approximation (86) will become valid when ¢ — R becomes
large and will in fact remain valid thereafter. However, in the early stages of its validity it
will be simpler to use the form (87), whilst ultimately the more convenient solution (73)
becomes valid.

It will be noted that the form (86) and its special case (87) involve arguments of Q from
0 to t—R, but, in general, these forms are only strictly valid when the contributions from
large arguments predominate. The asymptotic solution for @ could thus be used over the
whole range of integration, but rather better accuracy is to be expected if we use the exact
forms (57) and (66) for the relevant arguments of @ and the asymptotic form (81) for greater
arguments only.

For the special case of a point at a large distance to the rear which is on or near the plane
of symmetry y = § bisecting the slit, the forms (86) and (87) become valid at relatively
early times. Thus for a point y = , x = — X where X is large, the variation of  with g, in

Vol. 242. A. 3
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the exact equation (67) is small in absolute magnitude of order 1/87,. We can therefore
neglect this variation to obtain (86) and (87), not only when {— X is large but more generally
provided only that ¢— X is not small. '

For such a point equation (87) will then hold in particular within the range ¢ —X<1,
except for small (¢— X), and substituting the solution (57) for Q(¢) we find

x0~ el -] oot
‘p(t, X, %) 7/ X J[2(t—X)]+“/[2(t X)]| (1>t—X not small), (88)
for a point on the plane of symmetry at large distance X to the rear.

4-4. Pressure at any point to the rear prior to arrival of second diffraction wave from nearer edge

If r, and r, (>7,) denote the distances of any point from the edges of the half-planes then
considering, in view of symmetry, only points (—X,y,0) below the plane of symmetry

we have ‘
7= Xy = X (L-g) = X (1Y) (59)

Now the interaction between the half-planes does not start until time ¢ = 1, and up to
time ¢ = r; + 1 the pressure at a point to the rear may be obtained simply by a superposition
of results for the single half-plane as given by Friedlander (1946).

For a point in the shadow the pressure is the sum of the contributions from the first dif-
fraction wave from either edge and may be written

y=—Y<0, t<r +1: ,
bt —X,y) = %‘[G()(‘rl"‘X:t“rl) +Gy(r + X, t—1)]
—3[Go(ry— X, t—15) = Go(ry+ X, t—13)],  (90)
where G, is the function already defined by equation (40).

For a point in the direct line of the slit we have the direct contr1but1on of the external
incident pulse added to the diffraction wave contributions and the pressure is given by

0<y<}i, t<r+1:
2t —X,y) = Ht—X) —§[Gy(r,— X, t—1)) = Go(r, + X, t—ny) ]
—3[Go(ro— X, t—1y) — Gy (ry + X, i—15)]. (91)
On the edge of the shadow y = 0, the two forms (90) and (91) are equivalént, since the
change of sign in the first G, term balances the additional contribution of the incident pulse
in (91). ‘ _
For a point on the plane of symmetry, ¥ = %, when X is large we have
1
= r2~X+§X’ (92)

and using (40) for G, we obtain approximately

L
X large, §X<t—X<1.

ﬁ(L -4, %).Ngtan J[SX(t X)] ’H’A/ (93)
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DIFFRACTION OF TWO-DIMENSIONAL SOUND PULSES 19

When ¢— X is not small, 8 X(¢— X) is large and we can drop the tan~! symbol in the first
term to obtain the result (88) corresponding to the behaviour of the slit as a simple source.
It will be noted that as — X increases, the first term in (93) decreases whilst the second
increases, and the pressure has in fact a minimum, within the range of validity of (93), given
approximately by ‘
. 2

Puin.~ 7 At I= X~ 3 . (94)

4-5. Discussion of numerical results for plane H(t) pulse at normal incidence

4'51. Pressure-time variation at points on the back of the screen

The pressure p, on the back of either half-plane has been evaluated at points distant
Y = 0(0-2)4 from the edge for times ¢ = 0(0-2)4. The relevant values of G, are given in
tables 1@ and 15 which were calculated from equation (40) to an accuracy of three units
or better in the fourth decimal place. The function f; was evaluated from equation (42) for
intervals of 0-2 in 7 by numerical integration using an interval of 0-1 in Y; for this purpose,
values of G, given in paper I for ¥ = 0-1, 0-3, etc., were used in addition to the values of
G, now quoted. The results for f, are given in tables 2a and 25, in which any value is unlikely

TABLE la. VALUES OF G, (¥, 7) FOR 0<Y <2

Y

\\ 0-2 0-4 0-6 0-8 1-0 1-2 1-4 1-6 1-8 2-0

T
0 0 0 0 0 0 0 0 0 0
0-5 0-3918  0-3333 0-2952  0-2677 0-2468 0-2300 0-2164 0-2048  0-1950
0-6082 0-5 0-4360 0-3918 0-3590 0-3333 0-3125 0-2952 0-2804 0-2679
0-6667 = 0-5642 0-5 0-4544  0-4195 0-3918 0-3689 0-3498 0-3333 0-3188
0-7047 0-6082 0-5457 05 0-4645 04360 = 0-4120 0-3918  0-3743  0-3590
0-7321 0-6411 0-5805 0-5355 0-5 0-4710 0-4467 0-4258 0-4077 0-3918
0-7531  0-6667  0-6082 0-5642 0-5288 0-5 04754 0-4543 0-4358 0-4195
0-7697 0-6875 0-6309 0-5880 0-5532 0-5244 0-5 . 0-4788  0-4601  0-4436

0-7837 = 0-7047 0-6500 0-6082 0-5742 0-5457 0-5212 0-5 0-4813  0-4645
0-7951  0-7194 0-6667 0-6257 0-5923 0-5642 0-5399  0-5187 0-5 0-4833
. 07321 06812  0-6411 0-6082 0-5805 0-5564 0-5355 0-5167 0-5
0-8136 0-7436 06939 0-6544 0-6223 ° 0-5950 0-5713 0-5505 0-5319
0-8212 07531 0-7047 0-6667 0-6350 0-6082 0-5847 0-5642

0-8276  0-7620 0-7148 0-6776 0-6466  0-6202  0-5970

0-8340 0-7700 0-7240 0-6875 0-6570  0-6309

0-8391 0-7771 0-7323 0-6966 0-6667

0-8442  0-7837 0-7398  0-7047

0-8486 0-7897 0-7468

0-8524  0-7951

I R drirdrirdrd =X =R =)
oS R R = N R N N N
=
®
S
S
Y

TaBLE 1b. VALUEs oF G, (¥, 7) FOR 2< Y <4

Y
\ 2.2 24 2-6 2-8 .30 32 34 3-6 3-8
T

0 0 0 0 0 0 0 0 0 0
02 01864  0-1788 01724 - 01660 =~ 0-1609  0-1558  0-1514  0-1474  0-1436
04 02564  0-2469  0-2380  0-2300 02229  0:2163  0-2103  0-2049

0-6  0-3061 0-2953  0-2852  0-2760  0-2677 02602  0-2532

08 0-3456  0-3333 03224 03125  0-303¢  0-2953

10 03777  0-3650  0-3534¢  0-3430  0-3333

12 04050  0-3918  0-3798  0-3689

144 04287 04153  0-4030

1'6 04495 04358

1-8

0-4681
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to be in error by more than 0-0005. In table 24, the values for ¥ = 0-1, 0-3, etc., are less
extensive than for ¥ = 0-2, 0-4, etc., since the former were required only in the subsequent
determination of f, from equation (43) by numerical integration. The values obtained for
J> are given in table 3 to an accuracy of about 0-0001.

To obtain values of p, in the range 0<<Y <1 at times 3<¢<4, the function f; is also"
required, but it was found that all relevant values were zero to four decimal places and
therefore negligible relative to potential errors in the earlier functions.

A A

SOCIETY

OF

TABLE 2a. VALUEs OF f; (Y, 7) FOR 0< Y <1
Y
\\\ 0-1 02 03 04 05 0-6 0-7 0-8 09 1-0
N\ '
0 0 0 0 0 0 0 0 0 0 0
0-2 0-0116 0-0151° 0-0168 0-0184 0-0193 0-0200 0-0205 0-0208 0-0211 0-0208
0-4 0-0195 0-0254 0-0287 0-0314 0-0334 0-0344 0-0355 0-0360 — 0-0364
0-6 0-0254 0-0337 0-0382 0-0416 0-0443 0-0458 0-0475  0-0482 — 0-0494
0-8 0-0297 0-0400 0-0456 0-0499 0-0535 0-0556 —_— 0-0585 — 0-0601
1-00  0-0338 0-0455 ~ 0-0517 0:0567 0-0605 0-0635 @ — 0-0670 — 0-0690
1-2 0-0368 0-0494 0-0568 0-0627 — 0-0702 — 0-0740 — 0-0766
1-4 0-:0389 0-0530 0-0610 0-0670 — 0-0753 — 0-0803 — 0-0831
1-6 0-0411 0-0556 — 0-0711 — 0-0800 — 0-0866 —_— 0-0889
1-8 0-:0430 0-0584 — 0-0746 — 0-0843 —_ 0-0902 —— 0-0939
2-0 — 0-0602 —_ 00774 — 0-0878 — -0-0942 — 0-0983
2-2 — 0-0621 —_— 0-0799 —_— 0-0907 — 0-0975 — —_—
24 — 0-:0636 — 0-0821 —_— 0:0934 e — — —
2:6 — 0:0645 _ 0-0838 —_ — — — — —_
2-8 — 0-0658 —_ —_— —_— — — —_— —
TABLE 2b. VALUE OF f; (¥, 7) FOR 1<Y<3
Y
1.2 14 1-6 1-8 20 22 24 2:6 2-8 3-0
T B
0 0 0 0 0 0 0 0 0 0 0
0-2 0-0211 0-0208 0-0208 0-0205 0-0202 0-0199 0-0195 0-0193 0-0189
0-4 0-0367 0-0366 0-0367 = 0-0363 0-0359 0-03563 0:0349 0-0345
0-6 0:0499  0-0499 0-0499 0-0496 0-0491 0:0485 0-0478
0-8 0-0610 0-0611 0-0612 0-0610 0-0606 0-0599
1-0 0:0703 0-0706 0-0711 0-0707 0-0704
1-2 0-0782 0-0789 0-:0795 0-0794
14 0-0852 0-0860 0-0869
1-6 0-:0913 0:0924
1-8 0:0964
TABLE 3. VALUES oF f, (¥, 7) FOR 0<Y <2
Y
AN 0-2 04 0-6 0-8 1-0 1-2 14 1-6 1-8 2:0
r N\ ,
0 0 0 0 0 0 0 .0 0 0 0
0-2 0-0000 0-0000 0-0000 0-0000 0-0000 0-0000 0-0000 '0-0000 0-0000
0-4 0-0001 0-0001 0-0002 0-0002 0-0002 0-0002 0-0002. 0-0002
0-6 0-0003 00004 0-0005 0-0005 0-:0005 0-0005 0-0005
0-8 0-0006 0-0008 0-0009 0-0009 0-:0009 0-0009
1-0 0-0010 0-0012 0-0013 0-0014 0-0014
1-2 0-0014 0:0018 0-0019 0-0020
1.4, 0-0018 0-:0023. 0-0025 )
1-6 0-:0023  0-:0029
1-8 0-0028
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DIFFRACTION OF TWO-DIMENSIONAL SOUND PULSES 21

The general trend in the calculations, that for given small 7 and given Y the functions
1S f5 form a rapidly decreasing sequence, corresponds to the result easily obtained from
equations (40), (42) and (43) that

S (Y, 1)~ C,T%,ﬁc""l) (7 small). (95)

In addition to the increasing index of 7 it may also be shown that as r increases the constant
C, decreases rapidly. It may be noted that the decrease of f, with increasing 7 for small 7 is
more rapid than the corresponding decrease of the analogous G, functions of the strip
problem of paper I.

Using tables 1 a to 3, the pressure $, can be determined from equation (44) for ¥ = 0(0-2)4
at times ¢ = 0(0-2)4. As this final step of the calculations is so simple and since the pressure-
time variation is found to be essentially similar in character at all these points, values of
b, are quoted in table 4 for a few typical points only. These values are estimated to be correct
to about 0-001 or better.

The limiting case, Y00, of points very distant from the slit has also been examined
numerically by using equations (45) to (47) for times {—Y = 0(0-2)3. Values of 4,, 4, and
p+/Y are given in table 5 to estimated accuracies of 0-001 for 4;, 0-0003 for 4, and 0-002
for p4/Y. v

Finally, the total force P, on the back of both half-planes in the early stages has been
calculated as given in table 6 to an accuracy of about 0-001. For ¢< 2, these values were
obtained by using equations (56), (64) and (65). For £>2, equation (64) was used to give
the G, and f; contributions, whilst the f, contribution was obtained by numerical integration
of the relevant values of table 3. '

TABLE 4. PRESSURE AT POINTS ON BACK OF EITHER HALF-PLANE

¢ Y =0-2 Y=1 ¢ Y=0-2 Y=1 Y=2

0 0 0 2-0 0-755 0-5 0
0-2 0 0 22 0-760 0-508 0-195
0-4 0-5 0 2-4 0-764 0-517 0-268
0-6 0-608 0 2-6 0-768 0-525 0-319
0-8 0-667 -0 2-8 0-772 0-532 0-359
1-0 0-705 0 3-0 0-775 0-539 0-392
1-2 0-732 0-268 3-2 0-778 0-546 0-399
1-4 0-738 0-359 34 0-781 0-552 0-408
1-6 0-744 0-420 36 0-783 0-557 0-415
1-8 0-750 0-465 3-8 0-786 0-562 0-423
40 0-788 0-567 0-430

TABLE 5. VALUES oF 4;, 4, AND /Y p,, Y —>00

t—Y 4,—-Y-1) JY p, -y A4,t—Y—-1) A,(:1—-Y-2) JY by
0 0 0 1-6 0-1169 0 0-688
0-2 0 0-285 1-8 0-1489 0 0-705
0-4 0 0-403 2-0 0-1789 0 0-721
0-6 0 0-493 22 0-2071 0-0000 0-737
0-8 0 0-569 24 0-2338 0-0004 0-752
1-0 0 0-637 2-6 0-2591 0-0010 0-766
1-2 0-0449 0-653 2-8 0-2833 - 0-0020 0-780
1-4 0-0823 0-671 30 0-3065 0-0032 0-793
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22 E. N. FOX ON THE
TaBLE 6. VALUES oF P,
t P, ¢ P, ¢ P,
0 0 1-4 1-391 2-8 2-624
0-2 0-2 1-6 1-579 3-0 2-788
0-4 0-4 1-8 1-762 3-2 2-950
0-6 0-6 2:0 1-941 34 3-110
0-8 0-8 2-2 2-116 36 3-269
1-0 1-0 2-4 2-288 3-8 3-426
1-2 1-198 26 2-457 4-0 3-681

The general nature of the pressure-time curve at individual points on the back of either
half-plane is illustrated by the full curves in figure 4. For comparison, the corresponding
pressure at the back of a single half-plane subjected to the same external pulse is shown by
the broken curves in figure 4; it is seen that the main effect of the second half-plane is simply
a slowing down of the asymptotic approach of the pressure to its ultimate value of unity
corresponding to complete equalization. It may be noted that on arrival of the second
diffraction wave f; at time ¢ = Y1, the pressure-time curve decreases in slope discon-
tinuously on account of the initial finite slope of the f; wave as indicated by equation (95).
Since the followmg diffraction waves all have zero initial slope, the slope of the pressure-time
curve remains continuous at subsequent times.

10

e et o ] n e e e

08 B S

P

| -
P Lol
-

0-6 A = ’_,—

/ _— o
——
R
—

T
L1

0 04 08 1-2 1-6 20 2:4 2-8 32 36 4-0
time

pressure

Ficure 4. Pressure-time variation at points on back of either half-plane. Curve 1, Y=0-2.
Curve 2, Y=1. Curve 3, Y=2. —slit; --- single half-plane.

For distant points, ¥ - 0o, the values in table 5 can be plotted, but the resulting pressure-
time variation is of exactly similar type to the full curves of figure 4 and exhibits no additional
points of interest. '

From table 6 the total force/unit length P, can be plotted against time as shown in figure 5.
Up to time ¢ =1 the total force/unit length increases linearly and thereafter at steadily
decreasing rate. Ultimately, P, — co with increasing time, corresponding to virtual equaliza-
tion of the incident pressure over a steadily increasing area of the half-planes.

4-52. Pressure-time variation at points to the rear of the screen

The most interesting features of pressure-time variation occur for points to the rear in
the direct line of the slit, i.e. for 0 <y < 1. To illustrate these features, values of pressure have
been calculated in the initial stage from equations (90) and (91) for selected points all at
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DIFFRACTION OF TWO-DIMENSIONAL SOUND PULSES 23

distance R = 2-5 from the centre line of the slit. These values are shown plotted in figure 6,
where figure 64 indicates the points to which the curves refer. For the point P on the plane
of symmetry, the pressure rises instantaneously to the value of unity corresponding to direct
propagation of the incident pulse and remains constant until the first diffraction waves arrive
simultaneously from the two edges. The pressure then decreases sharply and reaches a
minimum value, after which it commences to increase and will presumably thereafter
increase asymptotically to a final value of unity again.

40
30 //
3
8
'g 2'0 7 g
=
3
g
1-0
0 1 2 3 4

time

Ficure 5. Total force on back of half-planes per unit length of slit.

1:0f
5 ] P
g0 T - 457
A 2
S
T
S T
0 ] l ]
2:0 - 2:5 ' 30 35
time FIGURE 64

FIGURE 6. Pressure-time curves at points to rear distant R =2-5 from centre of slit (figure 6a).

For the point @ at the edge of the shadow the process is very similar save that here the
first ‘cut-off” effect of the lower half-plane arrives simultaneously with the direct incident
pulse and cancels half the incident peak; the initial sharp rise of pressure at @ is thus only
one-half that in the incident pulse. The pressure then increases at Q until the first diffraction
wave from the upper edge arrives; this causes the pressure to decrease and subsequently
pass through a minimum before commencing to increase steadily again. By time ¢ = 2-7,
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24 E. N. FOX ON THE

the curve for this point @ effectively coincides in figure 6 with the curve for the point P since
the calculated pressures differ by 0-001 or less.

For the point § at 45° in the shadow, there is no initial sharp rise, since only diffraction
effects contribute to the pressure which at first rises steadily, though at decreasing rate, due
to the first diffraction wave from the lower edge. When the corresponding wave from the
‘upper edge arrives, however, the pressure suddenly starts to decrease and reaches a minimum
value of about the same magnitude and at about the same time as the corresponding minima
for the points P and . Beyond this time ¢ = 3-0 (approximately) the solution (90) is valid
up to about ¢ = 3-175 for the point S, and the calculations show the pressure starting to
increase again with values between those for the points P and 7'; these values are not
plotted owing to the difficulty- of distinguishing the resulting curve from the curves for
Pand T. v

The curve for the point 7" on the back of the half-plane is, of course, one already con-
sidered in figure 4 and shows a steady increase of pressure with time, with a sudden change
in slope at time ¢ = 30 to a smaller but still positive slope.

The curves in figure 6 indicate that for all points to the rear away from the screen at distance
R = 2-5 from the centre-line of the slit, the pressure passes through a minimum value which.
is of about the same magnitude and occurs at about the same time for all such points. In
view of the large variation of the initial shape of the curves in figure 6 it is remarkable that
they should converge so quickly and subsequently remain so close together; we shall return
to this result later when considering the approximation represented by the broken curve
in figure 6.

The preceding discussion refers to points at distance R = 2-5 from the centre-line of the
slit. For corresponding points at large distance R, the same general features will hold but
the initial portions for points such as P and @ will become concentrated into thin peaks.
Thus for a distant point on the plane of symmetry the pressure will have a sharp front as in
the external incident pulse but will then drop very rapidly, in a time of order 1/R, from the
value unity to values of order 1/4/R, with a subsequent minimum value given by equation
(94) at approximately ¢ = R+4. For a distant point on the edge of the shadow, the same
features will hold save that the initial thin peak will only rise to a value p = 4. For a distant
point at an appreciable angle in the shadow there is no initial peak, and the pressure is
small of order 1/4/R throughout the initial stages.

4-53. ° Pressure flux’ through slit

The pressure flux Q(¢) per unit length of slit is given exactly for <2 by equations (57)
and (66), from which values correct to four decimal places have been computed as quoted in
table 7. The corresponding asymptotic solution for @(¢) is given by equation (81) which has
been evaluated by numerical integration for ¢ = 0(0-5)4 to give results also quoted in table 7;
these values are estimated to be accurate to 0-0004 or better.

The exact and asymptotic solutions are compared graphically in figure 7, where the
initial thick line represents the contribution of §(¢) to the exact solution. Close agreement is
hardly to be expected in the initial stages, but figure 7 and table 7 indicate that by time ¢ = 1
the asymptotic solution differs only by 3 9, from the exact solution, and that thereafter the
difference tends to decrease, becoming only 0-4 %, by time ¢ = 2.
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TABLE 7. VALUES OF Q(f) FROM EXACT AND ASYMPTOTIC SOLUTIONS

Q1) Q) Q1) Q)

b

t ‘exact’ ‘asymptotic’ ¢ ‘exact’ ‘asymptotic
0 1+6() T 17 0-9152 —
0-5 1 1-1994 1-8 0-9043 —
1-0 1 1-0316 1-9 0-8942 —
11 0-9917 — 20 0-8847 0-8880
1-2 0-9790 — 2-5 — 0-8471
13 0-9655 — 30 — 0-8156
14 0-9520 — 35 — 0-7902
1-5 0-9391 0-9444 40 — 0-7692
1-6 0-9268 —

1’2“ - AN

/8(6) \\\
\\\

1‘0 \\‘\\\

08 =]
= 0-6

0-4

0-2}

0 10 20 30 40

" time

Ficure 7. Variation of (¢) with time according to exact (—) and asymptotic (---) solutions.

The preceding comparisons relate to @ () which, as defined by equation (52), is the inte-
grated pressure gradient over the width of the slit. It is of interest to examine, therefore,
whether the same degree of agreement exists for individual values of the pressure gradient
at specific points in the slit. For this purpose we can note first that for incompressible flow,
as assumed in the asymptotic solution, the pressure gradient through the slit is given by

___ 90

Vo0 = Ty (96)
for any time ¢ This equation corresponds to a constant shape for the distribution of ¢ over
the slit, whereas in the pulse problem the distribution of ¥ will undoubtedly vary with time.
However, for the particular instant ¢ = 1, it is easy to show from equations (49) and (50)

that  is in fact also given in the pulse problem by equation (96) but with Q(#) = 1.
Hence at the instant # =1 the percentage agreement between exact and asymptotic
solutions is the same for all individual values of ¢ as for Q(¢), namely, about 8 %,. Since
thereafter the values for Q(#) in table 7 show a general increase of agreement with increasing

Vol. 242. A. 4
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time, it seems reasonable to expect a similar trend for individual values of the pressure
gradient ¢ in the slit. As a check, calculations have been carried cut for time ¢ = 2 and are
given in table 8. The ‘exact’ values in this table were obtained by using equations (51)
and (50) to determine g; by numerical integration, whilst the corresponding values for the
asymptotic solution were found from equation (96) with the value Q(¢) = 0-8880 from
table 7. In both sets of values in table 8 the errors of calculation are estimated to be at
most 0-0004.
TaBLE 8. VALUES OF (y, {) WHEN {=2

exact solution  asymptotic solution

y=0, = 0-2820 0-2827
=02 = 0-7040 0-7068
P=04, = 0-5746 0-5770
$=05, = 0-5623 0-5654

The comparison in table 8 indicates that at time ¢ = 2 the agreement between exact and
asymptotic solutions for ¥, whilst varying somewhat from point to point in the slit, is again
of the same order as for the corresponding pressure flux Q(¢), namely, 0-4 %, at this particular
instant. -

The rapidity with which the pressure gradient in the slit approximates closely to that
given by the asymptotic solution based on incompressible flow is not unreasonable physically
owing to the nature of the distribution of the gradient over the slit. Thus from the exact
solution, for ¢>0 the pressure flux Q(¢) is at first completely concentrated at the edges,
50 9, at each, and then spreads out over the slit. However, the final asymptotic distribution
is also relatively concentrated near the edges, since equation (96) indicates that half of the
pressure flux Q(¢) is contained in two regions each extending only about one-seventh of the
width of the slit from either edge. In effect, therefore, adjustments in distribution of gradient
have to take place on average only over distances of a fraction of the width of the slit for
which purpose a period ¢ = 2, for example, may well be a relatively long time.

4-54. Pressure distribution near the slit at given times

Using tables 1a to 3 and the exact solution (44) the pressure on the back of either half-
plane has been calculated, to an estimated accuracy of 0-001, for ¥ = 0(0-2)4 at times
t=1,2,3,4. The results are quoted in table 9 as ‘exact’ values and plotted as the full curves
of figure 8. The pressure distribution on the back of either half-plane thus has an infinite
slope at each end and a discontinuity of slope at ¥ = {—1; this latter arises from the finite
slope at the front of the second (f;) diffraction wave.

For comparison, the corresponding incompressible flow distribution has been evaluated
to similar accuracy from equation (84), using ‘asymptotic’ values of Q(#) from table 7, and
the results are quoted in table 9 and plotted as the broken curves of figure 8.

Near the pressure front, ¥ = ¢, the two sets of curves exhibit considerable disagreement,
but conversely, near the slit, there is extremely close agreement and the full and broken
curves effectively coincide.

Calculations of the exact pressure distribution have also been carried out for points on
the plane of symmetry for times ¢ = 1,2, 3 over the relevant ranges of X for which the
solution (91) is valid. The results are shown as the full curves in figure 9 and the values
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1-0
N\,
L \\\
205 >
5]
A
0 1 ’ 2 3 4

distance from edge of slit

Ficure 8. Pressure distribution on back of either half-plane at times ¢=1, 2, 3, 4.
— exact; --- incompressible flow.

TABLE 9. COMPARISON OF EXACT AND ASYMPTOTIC SOLUTIONS FOR PRESSURE ON
BACK OF HALF-PLANE

i=1 (=2 i=3 =4
Y ‘exact’ ‘asymptotic’ ‘exact’ ‘asymptotic’ ‘exact’ ‘asymptotic’ ‘exact’ ¢ asymptotic"

0 1 1 1 1 1 1 1 1

0-2 0-705 0-715 0-755 0-755 0-775 0-775 0-788 0-788
0-4 0-564 0-608 0-663 0-663 0-691 0-690 0-708 0-708
0-6 0-436 0-532 0-597 0-597 0-629 0-630 0-651 0-651
0-8 0-295 0-471 0-544 0-545 0-580 0-582 0-605 0-606
1-0 0 0-421 0-5 0-502 0-539 0-542 0-567 0-568
1-2 — — 0-436 0-464 0-503 0-508 - 0-534 0-536
1-4 — — 0-369 0-432 0-471 0-478 0-504 0-508
16 — — 0-295 0-402 0442  0-451 0-477 0-483
1-8 — — 0-205 0-377 0-415 0-427 0-452 0-460
2.0 — — 0 0-352 0-392 0-405 0-430 0-439
2.2 — — — — 0-346 0-384 0-408 = 0-420
2.4 — — — — 0-295 0-366 0-388 0-402
2.6 — — — — 0-238 0-348 0-369 0-385
2.8 — — -— — 0-166 0-332 0-350 0-370
3.0 — — — — 0 0-316 0-333 0-355
3.2 — — —— — — — - 0-295 0-341
3.4 — — — — — — 0-253 0-329
3.6 — — e — — — 0-205 0-316
3.8 —_ — — — — — 0-144 - 0-304
4.0 . — — -— — — — 0 - 0-293

TABLE 10. COMPARISON OF EXACT AND ASYMPTOTIC SOLUTIONS FOR PRESSURE
DISTRIBUTION ON PLANE OF SYMMETRY

t = 1 . t=2 t=3

X ‘exact’ ‘asymptotic’ X ‘exact’ ‘asymptotic’ X ‘exact’ ‘asymptotic’
0 1 1 0-866 0-6257 0:6277 1-936 0-4544 *  0-4643
01 0-9367 0-9347 1-0 . 0-5880 0-5919 2:0 0-4449 0-4562
0-2 0-8768 0-8719 12 0-5399 0-5450 2:2 0-4176 0-:4322
04 0-7746 0-7594 14 0-5022 0-5044 24 0-3958 0-4101
06 0-7109 0-6663 1-6 0:4817 0-4686 2:6 0-3857 0:3897
0-8 0-7563 0-5898 1-8 0-5162 0-4366 2-8 0-4168 0-3707
0-866 1 0-5675 1-936 1 0-4164 2-958 1 0:3517
1.0 1 0:5259 2 1 0-4078 3 1 0-3501

4-2
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labelled ‘exact’ in table 10. The corresponding incompressible flow distributions have
been evaluated from equation (85) using the relevant ‘asymptotic’ values of Q(¢) from
table 7. These results are plotted as the broken curves in figure 9 and compared numerically
with the exact solution in table 10, where both sets of values are accurate to about 0-0003
or better.

Although the comparisons of figure 9 and table 10 are less extensive than those of figure 8
and table 9, the same type of agreement is apparent, namely, poor agreement near the
pressure front changing fairly rapidly to good agreement with decreasing distance from the
slit.

pressure

0 1 2 3
' distance from slit )

FiGURE 9. Pressure distribution at the rear on the plane of symmetry at times =1, 2, 3.
' — exact; --- incompressible flow.

Figures 8 and 9 illustrate clearly the validity of the assumption of §4-3, that the flow
through the slit becomes effectively incompressible within a central region of steadily in-
creasing size. ' :

The preceding comparisons refer to the two cases of points on the screen and points on
the plane of symmetry. These may be considered as the two extreme cases, since figure 6 has
already indicated that for intermediate angular positions, such as @ and § in figure 64, the
phenomena are simply of intermediate character. It seems reasonable therefore to conclude,
in particular, from tables 9 and 10 that for all points within a distance of about R = 25
from the centre-line of the slit, the asymptotic solution (82) becomes valid to order 3 9, or
less by the time of arrival of the second (f;) diffraction wave from the nearer edge. Within
this region R<2-5, therefore, the pressure can be determined by using the exact solutions
of § 4-4 as long as they are valid and thereafter, to an accuracy of 3 %, or better, the solution

(82) with @(¢) given by equation (81). This procedure would be much simpler, in general,
than using either the exact wave solution (44) for p, and then equation I (9) or the exact
solution (49) for ¥ and then equation I (7).

In view of the preceding discussion, the pressure distribution on the plane of symmetry
to the rear can be considered in figure 9 to be given by the full curves continued back to the
slit, for # = 2 and ¢ = 3, by the broken curves. The resulting shape of pressure-distance curves
is similar, as we might expect, to the corresponding pressure-time variation at each point
as illustrated previously by the curve for the point P in figure 6. Both types of curve show an
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DIFFRACTION OF TWO-DIMENSIONAL SOUND PULSES 29

initial peak which becomes progressively thinner as the pressure front travels to the rear
and both types exhibit a minimum value. |

These results may be interpreted physically by considering the phenomena to depend
broadly on two main processes of equalization. First, within the direct line of the slit
(0<y<1), the external pulse tends to be propagated straight on but steadily loses pressure
behind its front by equalization to the shadow regions above and below. Secondly, the excess
pressure everywhere in front of the screen produces a flow through the slit tending to equalize
pressure on both sides of the screen. For a point on the plane of symmetry at some distance
to the rear, the first process comes quickly into effective action and produces a decreasing
pressure behind the front. The second process, which tends to increase the pressure, is
slower in becoming appreciable but ultimately dominates and the pressure increases again.
For a point well in the shadow, such as  in figure 64, both processes act together to produce
an overall steady increase of pressure subject only to temporary decreases due to ‘over-
shooting’ of the first equalization process.

4-55. Behaviour of the slit as a source

The comparisons illustrated in figures 8 and 9 both show that the region of sensibly incom-
pressible flow spreads out from the slit more slowly than the pressure front. Thus, in table 9,
if we consider points ¥ = ¢—1 at unit distance behind the pressure front we find that at ¢ = 2
the asymptotic solution is correct to about 4 9,, whereas at ¢ = 4 it is only accurate to about
79%. For distant points to the rear for which R is large there will thus be a long period of
time after the arrival of the pressure front in which the asymptotic solution is not valid.
Further, in the later stages of this period many diffraction waves will be involved, and the
exact wave solution will become unmanageable for calculation purposes. However, the
approximation (86), regarding the slit as a central source, is expected to be especially suitable
for distant points and to become valid earlier than the asymptotic solution (73). Equation
(86) will be referred to as the ‘source’ approximation, and we will now consider some
evidence regarding its potential accuracy.

We have already noted in § 4-3 that the ‘source’ approximation should be especially good
for points on the plane of symmetry as indicated for very distant points by the equivalence
of equations (88) and (93) for all #— X not small. Conversely, we should also expect, from
the assumptions involved, that the ‘source’ approximation is least accurate in general for
points on the half-planes.

As a first numerical companson we consider the limiting case of dlstant points on the back
ofa half-plane for which we can use the exact solution (45) and the special form (87) of the

‘source’ approximation with R = Y+%. The results of calculation are shown in table 11,
where it must be noted that for the approximate solution the exact form of Q(¢) given by
(67) and (66) was used with numerical integration of equation (87) for z>1. Both sets of
values in table 11 are estimated to be accurate to 0-002 or better.

Table 11 shows that for times £>Y+41 = R+, the ‘source’ approximation is in good
agreement to about 19, or less with the exact solution. For corresponding distant points
on the plane of the symmetry, as already noted, the agreement will be virtually exact by
time {—R = {— X>4. It seems reasonable to conclude, therefore, that for all distant points,
the slit behaves effectively as a central two-dimensional source to an accuracy of order 1 %,
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30 E. N. FOX ON THE

TaBLE 11. COMPARISON OF EXACT SOLUTION AND ‘SOURCE’ APPROXIMATION
FOR fp, WHEN Y —00

VY, VY, VY 4 VY by
t—Y ‘exact’ ‘source’ t—Y ‘exact’ ‘source’
0-5 0-450 0 1-2 0-653 0-646
0-6 0-493 0-854 14 0-671 0-665
07 0-533 0-705 1-6 0-688 0-686
0-8 0-569 0-658 1-8 0-705 0-705
09 0-604 0-641 2:0 0-721 0-723
1-0 0-637 0-637

or less by time ¢ = R+ 4. This time, it may be noted, occurs on or before the arrival of the
second diffraction wave from the nearer edge.

As a second numerical comparison we can return to the curves given in figure 6 for points
atdistance R = 2-5 from the centre-line of the slit. Beyond ¢ = 3 all the curves for the different
points lie close together, and for comparison the ‘source’ approximation has been evaluated
from equation (86) using the exact forms (57) and (66) for Q(¢). The results are indicated
by the broken curve in figure 6 which for /> 2-8 becomes virtually coincident with the curve
for point P. Correspondingly, the ‘source’ approximation is worst for the point 7" on the
half-plane, but even at this point the differences for ¢>> 3 are only of order 2 9, or less as shown
in table 12, where relevant values are quoted to an estimated accuracy of 0-001.

TaABLE 12. COMPARISON OF EXACT SOLUTION AND ‘SOURCE’ APPROXIMATION
FOR p, AT Y =2

by by by by
t ‘exact’ ‘source’ ¢ ‘exact’ ‘source’
2:5 0-295 o0 31 0-396 0:390
2:6 0-319 0-535 32 0:399 0-392
2-7 0-341 0-439 34 0-408 0-401
2-8 0-359 0-407 36 0-415 0-411
29 0-376 0:394 3-8 0-423 0-420
3:0 0-392 - 0:390 4.0 0-430 0-428

TABLE 13. COMPARISON OF EXACT SOLUTION AND ‘SOURCE’ APPROXIMATION
FOR fp, AT TIME {=Y+41=R+}%

§ 23 by by F 23
Y ‘exact’ ‘source’ Y ‘exact’ ‘source’
0 1 0-787 1-8 0-408 0-406
0-2 0-732 0-687 2:0 0-:392 0-:390
0-4 0-641 0-619 2:2 0-378 0-376
0-6 0-581 0-567 2:4 0-365 0-364
0-8 0-536 0-527 2:6 0-353 0-352
1-0 05 0-494 2-8 0-343 0-342
1-2 0-471 0-466 30 0-:333 0-333
14 0-447 0-443 4.0 0-295 0-295
16 0-426 0-423 6-0 0-247 0-247

In both the preceding comparisons, good agreement commences at about ¢ = R+-3.
At this time, by use of equation (57), the ‘source’ approximation (86) gives

2Y 42

1 1 -1 . _ 1 i
+—cosh (2Y+1) (t=Y+1=R+}), (o)

b~ T 0T5)
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for a point on the back of either half-plane whilst the corresponding exact solution (44) gives

b= gtan“l(jy) (t=TY+1). (98)

Equations (97) and (98) have been evaluated to give the comparison shown in table 13,
which shows an overall trend for increasing agreement with increasing distance from the
slit. s
-Generally, for large R—>oo, the ‘source’ approx1mat10n (87) gives by use of (57)

'p'~m (R—o0, t=R+1), (99)
for any point to the rear at distance R from the centre line of the slit. This equation (99)
agrees with the exact limiting form (94) for a point in the plane of symmetry and with the
limiting form of the exact solution (98) for a point on the back of either half-plane; similarly,
it can be shown from equation (90) that the same limiting form holds for any point in the
~shadow of large X and Y. Hence for any distant point to the rear the source approximation
agrees with the exact solution at time ¢ = R-+1 in the limit R—>c0.

4-56. Approximate procedure for determining pressure

The preceding comparisons indicate that for R>2-5 the agreement between the ‘source’
approximation, and the exact solution becomes especially good at time ¢ = R--} and that
thereafter the difference will be oscillatory in magnitude, of order 29, or less, and pre-
sumably decaying with i 1ncreasmg time. It would thus appear that to an accuracy of order

29, or less, the ‘source’ approximation can be used to obtain the pressure for all points
R>2-5 at all times after the exact solutions of § 4-4 cease to be valid. This region R>2-5 is
complementary to the region R<2-5 within which it was previously concluded that the
asymptotic solution could similarly be used. Thus, to an accuracy of order 3 9, or less, the
pressure in our particular problem can be determined everywhere to the rear of the screen
by using (a) the relatively simple exact solutions of §4-4 so long as they are valid, and
thereafter either the asymptotic solution or the ‘source’ approximation. For the inner
region R <2-5 the former only would be used, but for more distant points the source approxi-
mation would be used first and later replaced by the simpler asymptotic solution which
ultimately becomes accurate for any point, however distant.

Both the asymptotic solution and the ‘source’ approximation depend primarily on a
knowledge only of @(#) which is given exactly by equations (57) and (66) for £<2 and
thereafter to good accuracy by equation (81).

Such use of the approximate expressions (82) and (86), or their special forms (73), (84),
(85) and (87) where relevant, gives a practical alternative to the relatively laborious
calculations necessary in the formal exact wave solution when many waves are involved,
especially if a point not on a half-plane is under consideration and equation I (7) or I (9)
must be used for the exact solution. When using the approximate method we can, of course,
still use the simple equation I (1) to determine pressures in front of the screen from a know-
ledge of the pressure at image points to the rear.
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32 E. N. FOX ON THE TWO-DIMENSIONAL SOUND PULSES

5. CoNcLusIiON

In the present paper a general method has been indicated by which the results of a previous
paper (Fox 1948) could be used without formal difficulty to derive an explicit solution for
any two-dimensional pulse problem involving strips or half-planes as obstacles. The method
has been used to obtain the general form of solution for an infinite slit in a perfectly reflecting
screen subjected to any known incident two-dimensional pulse field (figure 2).

Numerical results have been obtained for the particular case of a plane H(¢) pulse (figure 3)
incident normally on such a screen. The most interesting pressure phenomena are those
occurring initially in the direct line of the slit as illustrated in figures 6 and 9. Apart from
these initial phenomena the general process of ultimate equalization of pressure through the
slit appears to be, in general, of a steady asymptotic character. In particular, there is no
evidence for the pressure to the rear ever exceeding the ultimate value of unity, and con-
versely, by equation I (1), the pressure in front would similarly never drop below unity
after the arrival of the pulse. In this respect the slit problem differs from the corresponding
strip problem of paper I in which the ultimate pressure equalization appears to be essentially
a decaying oscillatory process.

Possibly the most interesting result of the calculations is the rapidity with which the flow
through the slit becomes effectively incompressible and the corresponding early validity
of the asymptotic solution in a region near the slit. Similarly, for more distant points it is
interesting to find that the slit behaves as a central source to fair accuracy relatively soon
after the arrival of the initial diffraction wave.

The related problem of a regular grating subjected to a plane pulse at normal incidence
can be solved without difficulty by using the method of § 2, and results which have been
obtained for this problem will be considered in a further paper.
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